Portfolio

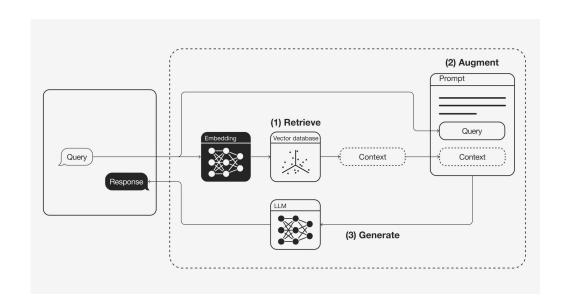
Jonghyun (Jong) Song Ph.D. Student @ Seoul National University

Outlines

- Injecting document-document interaction to information retrievers
- Motivations
- Project 1: Jointly Comparing Multiple Candidates (CMC; EMNLP main)
- Project 2: Beam Document Search for Complex QA (In progress)
- 2. Beam Document Search for Complex QA
 - Motivations
 - Project 1: Multi-modal Multi-view Patent Search Engine (1 Minister's award)
 - Project 2: Redefining Information Extraction from Visually Rich Documents as Token Classification (1 IJCAI competition award)
 - Project 3: Enhancing Performance of LLM for Understanding Documents through Various Markup Languages (In progress)

1. Injecting Document-document Interaction to Information Retrievers

Motivations

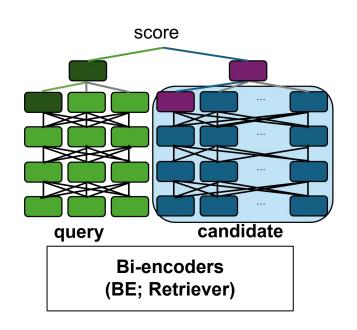


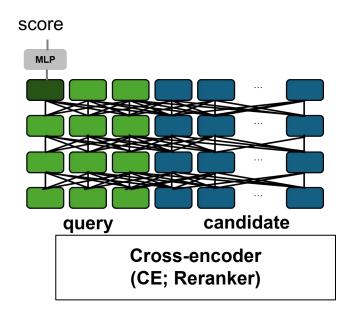
RAG pipeline

LLMs cannot answer complex questions in real-world contexts on their own.

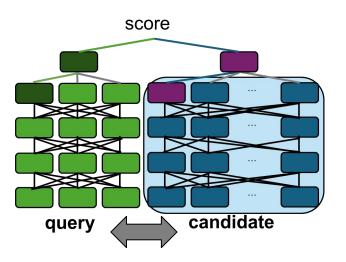
We need an effective retriever

Retrievers = compatibility evaluators for (query, document) pairs





Retrievers = compatibility evaluators for (query, document) pairs



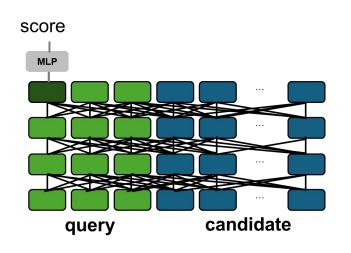
Bi-encoders

encode the query and candidates independently, then retrieve the **K** nearest candidates

- (+) Efficient for large search spaces (MIPS)
- (-) Inaccurate; May miss gold candidates

No token level interaction!

Retrievers = compatibility evaluators for (query, document) pairs



Cross-encoders

encode concatenated text and directly output a score for the final prediction.

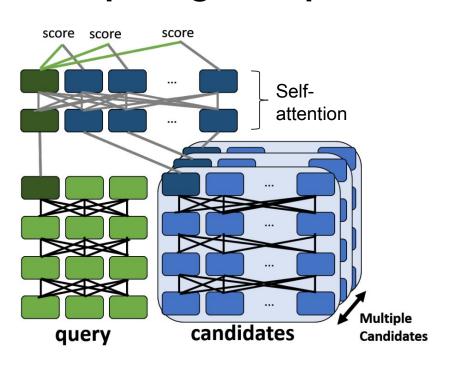
- (+) Candidates are examined more carefully
- (-) Expensive and limited scalability

Cannot Search over large spaces!

- Modeling efficient query-document interaction is important for retriever systems
 - Fine-grained interaction (i.e., cross-encoder) is accurate but computationally expensive
 - Coarse interaction (i.e., bi-encoder) is fast but less accurate
- Late interaction models are proposed to find a sweet spot
 - ColBERTv2(K Santhanam et al., 2021), Poly-encoder(S. Humeau et al., 2019), MixEncoder (Y. Yang et al., 2023)...

Project 1: Jointly Comparing Multiple Candidates (CMC)

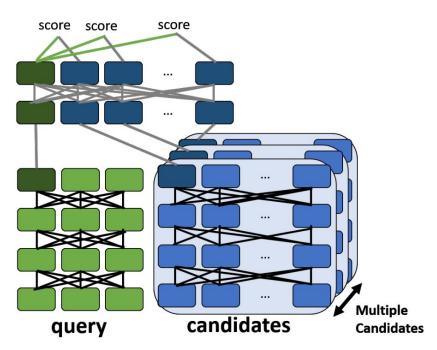
1 EMNLP main paper accepted/ Spotlight paper talk at ACL workshop



We are presenting Comparing Multiple Candidates (CMC) which

- condenses information to single vector embedding (~Bi-encoder), and uses joint attention on query and multiple candidates (~Cross-encoder)
- uses both query-document and document-document interaction via self-attention layer

J. Song et al., Comparing Neighbors Together Makes it Easy: Jointly Comparing Multiple Candidates for Efficient and Effective Retrieval, In EMNLP Main Track (Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing), 2024 / Spotlight Talk at 9th Workshop on Representation Learning for NLP in ACL 2024



(d) Comparing Multiple Candidates (CMC;Ours)

How CMC works?

Given candidates from the first-stage retriever (e.g., bi-encoder),

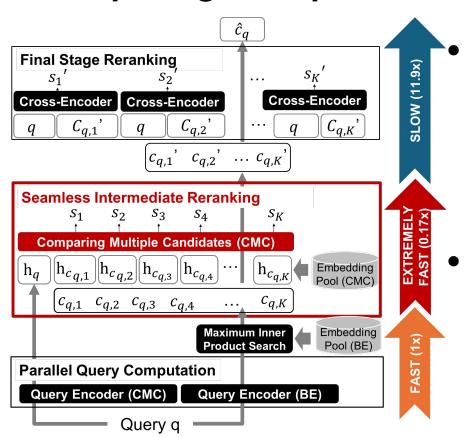
- 1. Query (\mathbf{h}_q^{sent}) and multiple candidates ($\mathbf{h}_{cq,j}^{sent}$) are **pre-computed** like bi-encoders
- 2. The self-attention layer **jointly processes concatenated embeddings** of a query and all candidates

$$[\mathbf{h}_{q}^{\mathit{CMC}}; \mathbf{h}_{\mathit{C}_{q,1}}^{\mathit{CMC}}; ...; \mathbf{h}_{\mathit{C}_{q,K}}^{\mathit{CMC}}] =$$

$$\operatorname{SelfAttn}([\mathbf{h}_{q}^{\mathit{sent}}; \mathbf{h}_{\mathit{C}_{q,1}}^{\mathit{sent}}; ...; \mathbf{h}_{\mathit{C}_{q,K}}^{\mathit{sent}}])$$
3. Final prediction is **calculated via dot**

 Final prediction is calculated via dot products

$$\hat{c}_q = \operatorname{argmax}_{c_{q,j} \in C_q} \mathbf{h}_q^{CMC} \cdot (\mathbf{h}_{C_{q,j}}^{CMC})^T$$

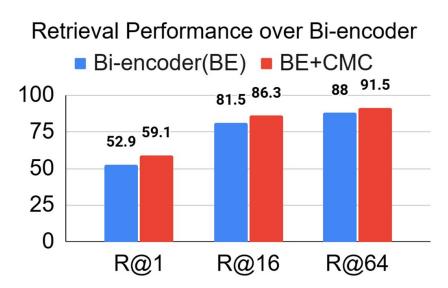


- CMC as the **seamless intermediate reranker** (BE-**CMC**-CE)
 - enhance retrieval performance with negligible extra latency
 - prevent error propagation from retriever

- CMC as a fast and effective *final stage* reranker (BE-CMC)
 - CMC can serve as the final reranker under time constraints

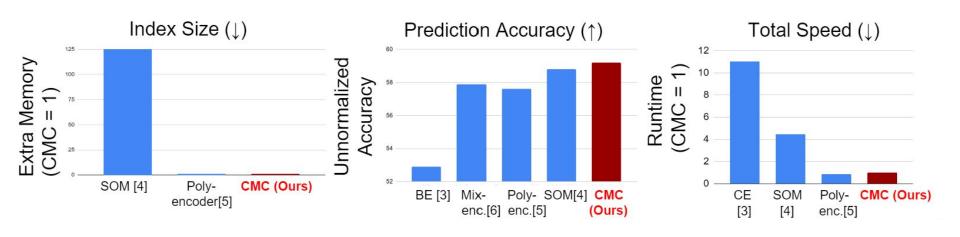
Performance as a Intermediate Reranker (BE-CMC-CE)

CMC significantly improves
 bi-encoder Recall@K (+4.8p,
 3.5p for R@16, R@64) at a
 marginal extra speed (+0.07x)



Performance as a Final-stage Reranker (BE-CMC)

- CMC shows robust performance over 4 datasets with 3 tasks
- CMC is 11x faster than cross-encoders and requires 125x less index size than Sum-of-max



Project 2: Beam Document Search for Complex QA

In progress

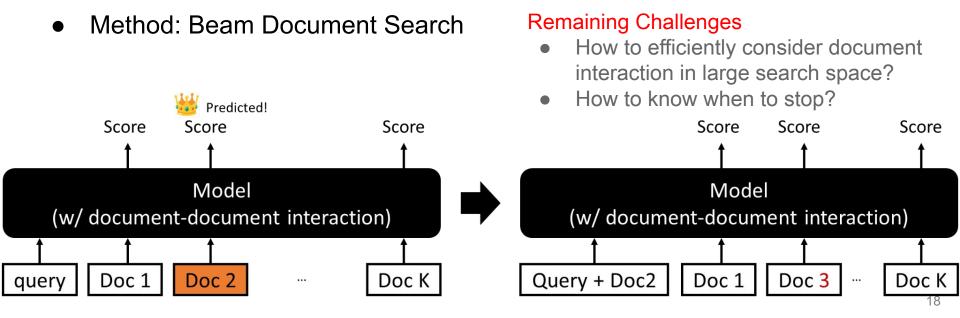
Ongoing Projects: Retriever for Complex QA

CMC can effectively replace token-level interaction of cross-encoder with query-document and document-document and interaction with single vector embeddings

→ What if we apply document-document interaction to **complex QA tasks**, where multiple documents are required to be retrieved?

Ongoing Projects: Retriever for Complex QA

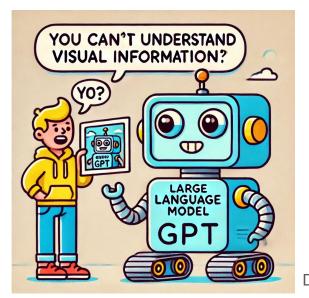
- Project: Injecting document interactions for Document Set Retrieval
- Task: Given query q, predict the set of documents D



2. Enhancing Performance of LLM for Understanding Document Images

Motivations

Can LLM understand complex document Images?



DALL-E generated

Research Question:

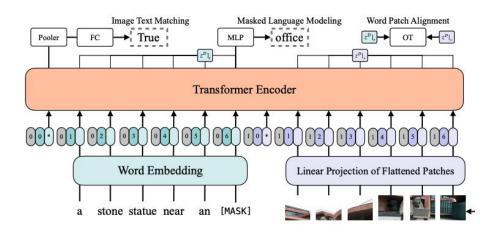
How can LLM (not LMM) understand or generate

visual (or multi-modal) information?

Can LLM understand complex document Images?

LLM (Large Language Models)

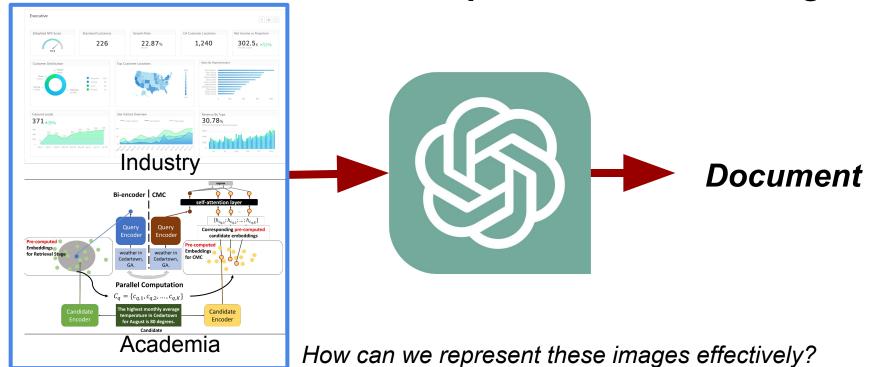
- (+) Superior Reasoning Capability
- (-) Not understand multi-modal information



LMM (Large Multi-modal Models)

- (+) Access to visual information
- (-) Inferior reasoning capability
- (-) difficulty understanding images with text

Can LLM understand complex document Images?

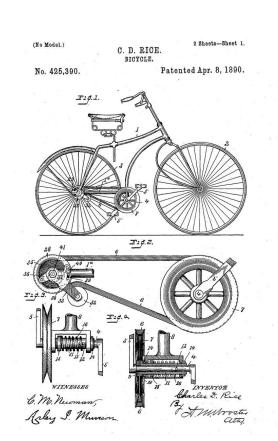


Project 1: Multi-modal Multi-view Patent Search Engine

1 Minister's Award @ Korea-Data Science Hackathon

Introduction

- Prior work search for patents search is important but difficult
 - Patent description has long-context and mixed modality
 - Patent attorney often uses techniques to avoid specific keywords not to be expose their patents



Solutions: Multi-modal Multi-view Patent Search

Multi-Modal

Using a multimodal model capable of handling **both text and images**, we will conduct a similarity search for patents

Multi-View

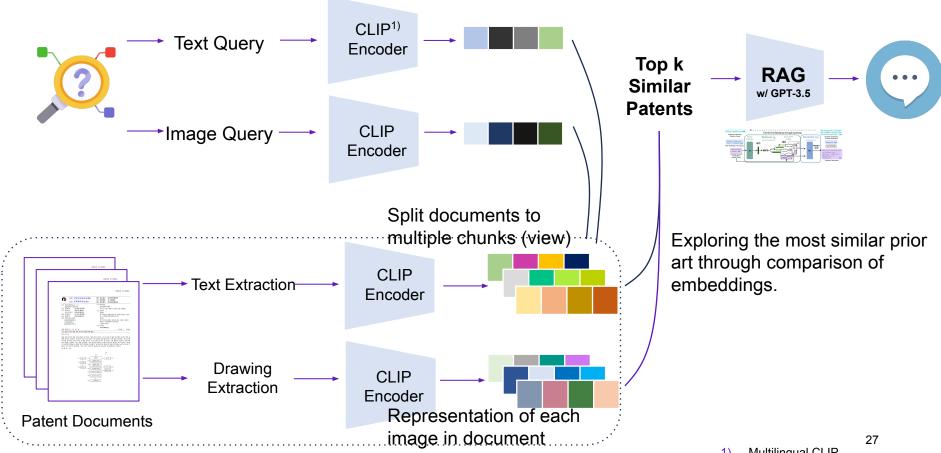
Dividing lengthy patent documents into multiple **chunks** (i.e., views), embedding them, and analyzing embedding similarity to semantically search through patent documents regardless of their location

RAG

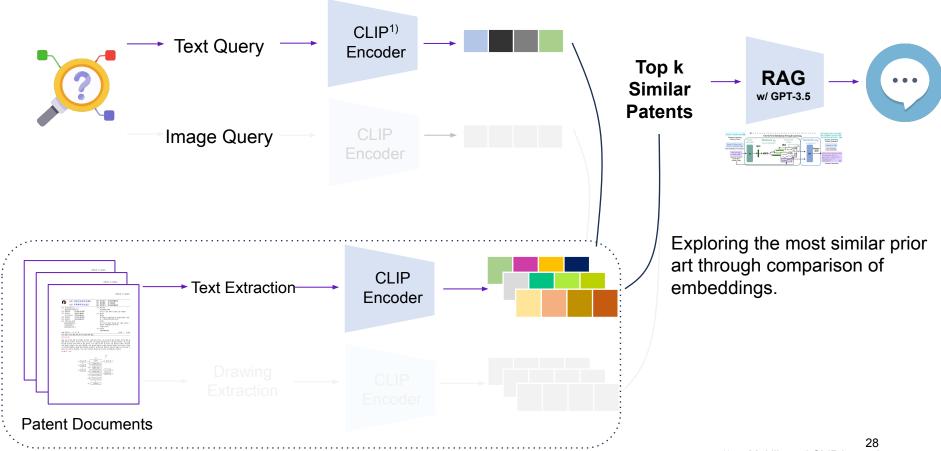
(Retrieval-Augmented Generation)

Developing a chatbot-style UI that provides detailed answers to questions based on search results, rather than simple search result returns

Model Architecture - CLIP Embedding

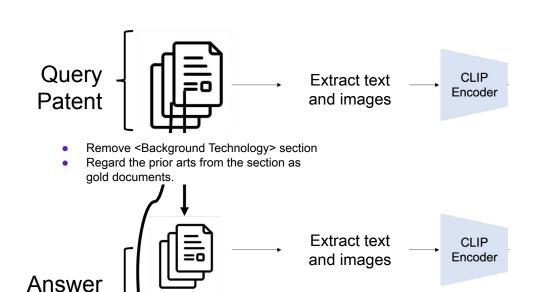


Model Architecture (Fast Mode)



Training Strategies

- Self-supervised Training
 - Some patents have designated 'prior arts' in the section 'Background Technology'
 - Regard this as similar items in contrastive learning



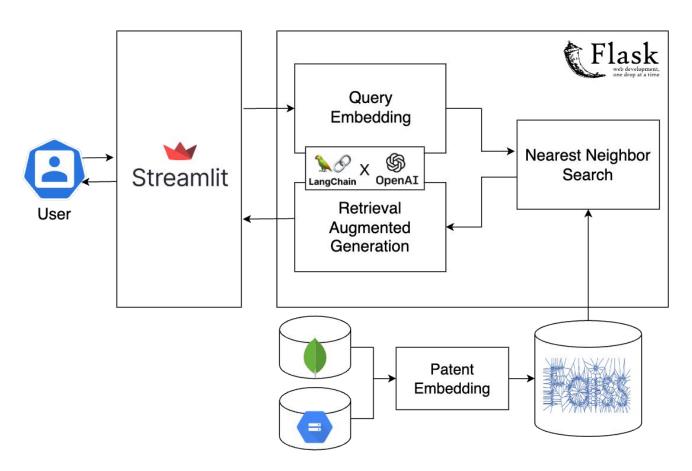
Extract text

and images

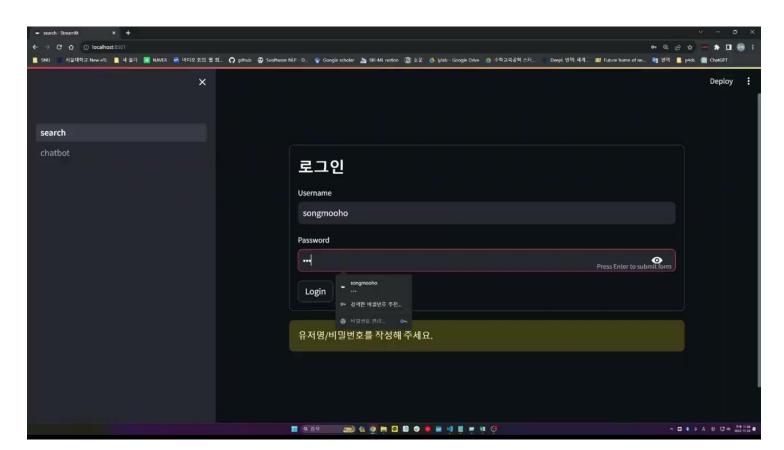
Patents

CLIP Encoder

System architecture



Demonstration (Korean)



Project 2: Redefining Information Extraction from Visually Rich Documents as Token Classification

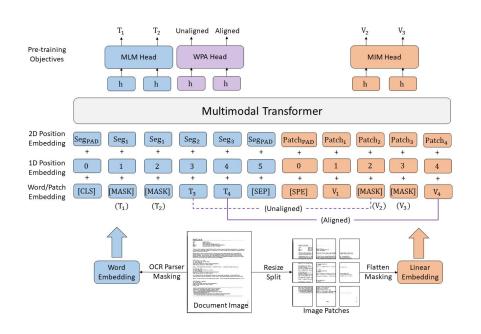
2nd Place @ IJCAI 2024 Competition on visually rich document understanding

Background: Form-NLU Datasets

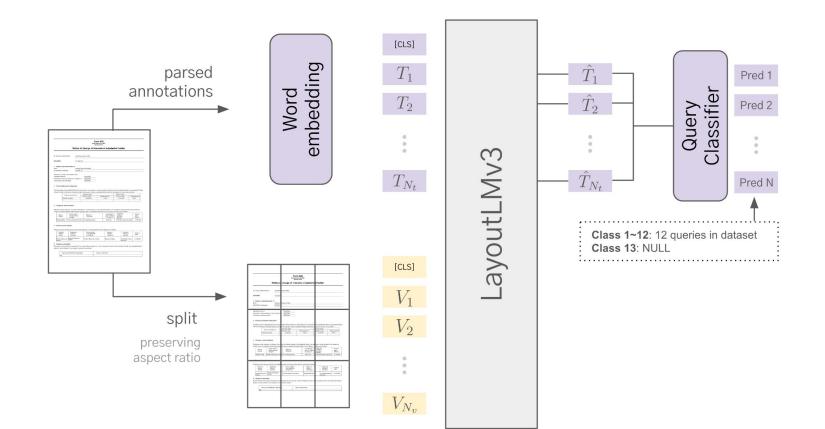
- Queries (keys) related to form designers' intentions are limited:
 - Only 12 queries are presented
- Includes digital, printed, and handwritten images
- Various meta information of ROIs is presented
 - e.g., text, bounding box coordinates, text/visual feature, etc.
- Document may have no values related to keys (i.e., NIL prediction)

Background: LayoutLMv3 (Huang et al., 2023)

- Multimodal transformer for document understanding
- Pre-trained objectives:
 - Masked Language Modeling
 - Masked Image Modeling
 - Word-Patch Alignment
- Pre-trained dataset:
 - IIT-CDIP Test Collection 1.0
 - a large-scale scanned
 document image dataset

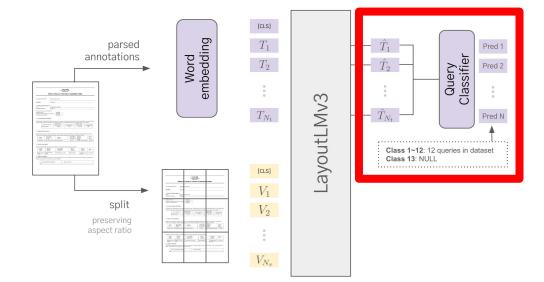


Solution: Information Extraction as Token Classification



Solution: Information Extraction as Token Classification

- Redefining Information Extraction as Token Classification
 - As # of queries is limited to 12, we define the problem as token classification task with 13 classes (12 queries + 1 for NULL)



Solution: Information Extraction as Token Classification

- Redefining Information Extraction as Token Classification
 - As # of queries is limited to 12, we define the problem as token classification task with 13 classes (12 queries + 1 for NULL)

Notice of change of interests of Substantial Holder

12846,4 To: 17059.5 -> mapped to 'Company Name' class Consolidated Rutile Limited

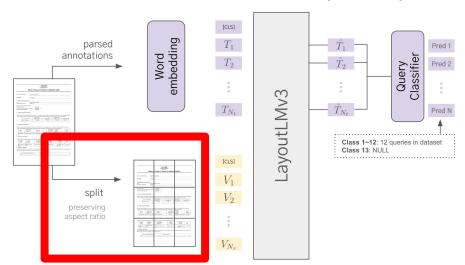
-> mapped to 'NULL' class

Solution: Information Extraction as Token Classification

- Preserving aspect ratios of document images
 - Document images include text, which might be affected by the aspect ratio of the images.

Retaining original aspect ratios as much as possible (600 by

800)



Result

- Our model shows robust performance on both the public and private datasets
- Maintaining a resolution close to the original aspect ratio (600 by 800) significantly improves performance on the public dataset.

Model	Steps	Resolution	public	private
LayoutLMv3	10K	(224, 224)	96.55	97.75
		(600, 800)	<u>97.60</u>	97.93
	100K	(224, 224)	96.02	97.75
		(600, 800)	97.77	96.72

Failure Cases: Inference w/ GPT-3.5-turbo

- We prompted text-only GPT-3.5-turbo with text information of the objects
- Other techniques such as one-shot chain-of-thought prompting are also deployed

Prompt: Given objects from financial form. The answer can only be extracted from this list:

- global id: 18191, text: Form 604 Corporations Act 2001 Section 671B, center x_axis: 264.0, center y_axis: 41.0, width: 85.0, height: 44.0, category: 1
- global id: 18192, text: Notice of change of interests of substantial holder, center x_axis: 169.0, center y_axis: 89.0, width: 274.0, height: 16.0, category: 1
- global id: 18193, text: 1. Details of substantial holder (1), center x_axis: 73.0, center y_axis: 174.0, width: 123.0, height: 11.0, category: 2
- global id: 18194, text: 2. Previous and present voting power, center x_axis: 70.0, center y_axis: 309.0, width: 141.0, height: 13.0, category: 2

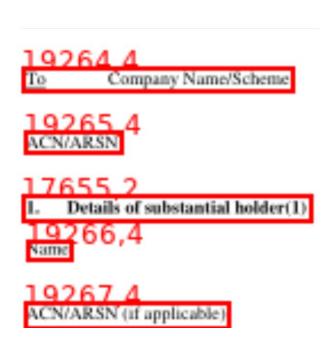
Failure Cases: Inference w/ GPT-3.5-turbo

 GPT-3.5 does not perform well, implying that the form-understanding capability of text-only LLM is not well developed yet.

Steps	Resolution	public	private
10K	(224, 224)	96.55	97.75
	(600, 800)	97.60	97.93
100K	(224, 224)	96.02	97.75
	(600, 800)	97.77	96.72
-	FI	31.77	38.28
	10K	10K (224, 224) (600, 800) 100K (224, 224)	10K (224, 224) 96.55 (600, 800) 97.60 100K (224, 224) 96.02 (600, 800) 97.77

Failure Cases: Inference w/ GPT-3.5-turbo

- GPT-3.5 does not perform well, implying that the form-understanding capability of text-only LLM is not well developed yet.
 - They do not understand information over multiple bounding boxes
 - e.g. GPT does not understand the key to 'holder ACN/ARSN' is bbox '19267', not '19265'



Conclusion

- Fine-tuning a multi-modal transformer pre-trained with scanned documents (LayoutLMv3) shows robust performance on a diverse distribution of datasets (digital & printed).
 - Keeping aspect ratios similar to the original document is helpful in most cases
- Prompting document information to text-only LLM does not effectively solve the problem
 - Future work will explore the potential of LLMs (including Vision LLMs) for visually rich document understanding tasks.

Project 3: Enhancing Performance of LLM for Understanding Documents through Various Markup Languages

In Progress

Background

GPT did **NOT** understand plain text prompt well in the competition

What if prompt is given as markup languages?

Research Questions

[RQ 1] Can LLMs better understand visually rich documents with OCR when they are expressed in **markup language** (e.g., HTML and XML etc.) rather than in **plain text with coordinates?**

[RQ 2] **Which data format is the most effective** for representing layout information of visually rich documents? i.e., which is the best format for LLM processing: HTML, XML or Markdown?

Baseline

- LMDX: Language Model-based Document Information Extraction and Localization (Perot et al., 2024)
 - This recent work focuses on using only simple text for LLM-based VRD understanding.
 - The document is represented in the format:
 <Text> XX | YY
 - Providing coordinate tokens led to a 14.98p[†] in F1 score on the VRDU-Ad-buy dataset."

```
LLM Prompts
               Replacing this
        (xN)
               with markup
               languages!
<Document>
Apple Store 38|05
D8050LLA 25|43
</Document>
<Task>
                      LLM
  retailer":"",
                    Inferen
 "line item":[{
  "product id":"",
  "product price":""
 "subtotal":""
</Task>
<Extraction>
```

Model architecture

- Overall pipeline
 - OCR is used to extract text and layout
 - OCR result is parsed to markup language (e.g., .html, .xml, and .md)
 - The markup language is expected to preserve both textual content and document layout better than plain text.
 - The structured markup language is processed by an LLM for the downstream task.

